Exercise 98

(a) Write $|x|=\sqrt{x^{2}}$ and use the Chain Rule to show that

$$
\frac{d}{d x}|x|=\frac{x}{|x|}
$$

(b) If $f(x)=|\sin x|$, find $f^{\prime}(x)$ and sketch the graphs of f and f^{\prime}. Where is f not differentiable?
(c) If $g(x)=\sin |x|$, find $g^{\prime}(x)$ and sketch the graphs of g and g^{\prime}. Where is g not differentiable?

Solution

Part (a)

Differentiate the given function using the chain rule.

$$
\begin{aligned}
\frac{d}{d x}|x| & =\frac{d}{d x} \sqrt{x^{2}} \\
& =\frac{1}{2}\left(x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\frac{1}{2}\left(x^{2}\right)^{-1 / 2} \cdot(2 x) \\
& =\frac{x}{\left(x^{2}\right)^{1 / 2}} \\
& =\frac{x}{|x|}
\end{aligned}
$$

Part (b)
Differentiate the given function $f(x)=|\sin x|$ using the chain rule.

$$
\begin{aligned}
\frac{d}{d x}|\sin x| & =\frac{d}{d x} \sqrt{\sin ^{2} x} \\
& =\frac{1}{2}\left(\sin ^{2} x\right)^{-1 / 2} \cdot \frac{d}{d x}\left(\sin ^{2} x\right) \\
& =\frac{1}{2}\left(\sin ^{2} x\right)^{-1 / 2} \cdot(2 \sin x) \cdot \frac{d}{d x}(\sin x) \\
& =\frac{1}{2}\left(\sin ^{2} x\right)^{-1 / 2} \cdot(2 \sin x) \cdot(\cos x) \\
& =\frac{2 \sin x \cos x}{2\left(\sin ^{2} x\right)^{1 / 2}} \\
& =\frac{\sin 2 x}{2|\sin x|}
\end{aligned}
$$

Below is a graph of $y=f(x)$ and $y=f^{\prime}(x)$ versus x.

$f(x)$ is not differentiable wherever there are kinks in its graph, that is, $x=n \pi$, where n is an integer.

Part (c)

Differentiate the given function $g(x)=\sin |x|$ using the chain rule.

$$
\begin{aligned}
\frac{d}{d x} \sin |x| & =\frac{d}{d x} \sin \sqrt{x^{2}} \\
& =\left(\cos \sqrt{x^{2}}\right) \cdot \frac{d}{d x}\left(\sqrt{x^{2}}\right) \\
& =\left(\cos \sqrt{x^{2}}\right) \cdot\left[\frac{1}{2}\left(x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(x^{2}\right)\right] \\
& =\left(\cos \sqrt{x^{2}}\right) \cdot\left[\frac{1}{2}\left(x^{2}\right)^{-1 / 2} \cdot(2 x)\right] \\
& =\left(\cos \sqrt{x^{2}}\right) \cdot\left[\frac{x}{\left(x^{2}\right)^{1 / 2}}\right] \\
& =\frac{x}{|x|} \cos |x|
\end{aligned}
$$

Below is a graph of $y=g(x)$ and $y=g^{\prime}(x)$ versus x.

$g(x)$ is not differentiable wherever there are kinks in its graph, that is, $x=0$.

